\(\int \frac {1}{(d+e x)^4 (a+b (d+e x)^2+c (d+e x)^4)} \, dx\) [620]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 224 \[ \int \frac {1}{(d+e x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx=-\frac {1}{3 a e (d+e x)^3}+\frac {b}{a^2 e (d+e x)}+\frac {\sqrt {c} \left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a^2 \sqrt {b-\sqrt {b^2-4 a c}} e}+\frac {\sqrt {c} \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a^2 \sqrt {b+\sqrt {b^2-4 a c}} e} \]

[Out]

-1/3/a/e/(e*x+d)^3+b/a^2/e/(e*x+d)+1/2*arctan((e*x+d)*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(b
+(-2*a*c+b^2)/(-4*a*c+b^2)^(1/2))/a^2/e*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/2*arctan((e*x+d)*2^(1/2)*c^(1/2
)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(b+(2*a*c-b^2)/(-4*a*c+b^2)^(1/2))/a^2/e*2^(1/2)/(b+(-4*a*c+b^2)^(1/2)
)^(1/2)

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1156, 1137, 1295, 1180, 211} \[ \int \frac {1}{(d+e x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx=\frac {\sqrt {c} \left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a^2 e \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} a^2 e \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {b}{a^2 e (d+e x)}-\frac {1}{3 a e (d+e x)^3} \]

[In]

Int[1/((d + e*x)^4*(a + b*(d + e*x)^2 + c*(d + e*x)^4)),x]

[Out]

-1/3*1/(a*e*(d + e*x)^3) + b/(a^2*e*(d + e*x)) + (Sqrt[c]*(b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2
]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) + (Sqrt[c]*(b -
 (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^
2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*e)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1137

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^2 +
 c*x^4)^(p + 1)/(a*d*(m + 1))), x] - Dist[1/(a*d^2*(m + 1)), Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p +
 5)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && In
tegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1156

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1295

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(f
*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1)/(a*f*(m + 1))), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{x^4 \left (a+b x^2+c x^4\right )} \, dx,x,d+e x\right )}{e} \\ & = -\frac {1}{3 a e (d+e x)^3}+\frac {\text {Subst}\left (\int \frac {-3 b-3 c x^2}{x^2 \left (a+b x^2+c x^4\right )} \, dx,x,d+e x\right )}{3 a e} \\ & = -\frac {1}{3 a e (d+e x)^3}+\frac {b}{a^2 e (d+e x)}-\frac {\text {Subst}\left (\int \frac {-3 \left (b^2-a c\right )-3 b c x^2}{a+b x^2+c x^4} \, dx,x,d+e x\right )}{3 a^2 e} \\ & = -\frac {1}{3 a e (d+e x)^3}+\frac {b}{a^2 e (d+e x)}+\frac {\left (c \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{2 a^2 e}+\frac {\left (c \left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{2 a^2 e} \\ & = -\frac {1}{3 a e (d+e x)^3}+\frac {b}{a^2 e (d+e x)}+\frac {\sqrt {c} \left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a^2 \sqrt {b-\sqrt {b^2-4 a c}} e}+\frac {\sqrt {c} \left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a^2 \sqrt {b+\sqrt {b^2-4 a c}} e} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.05 \[ \int \frac {1}{(d+e x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx=\frac {-\frac {2 a}{(d+e x)^3}+\frac {6 b}{d+e x}+\frac {3 \sqrt {2} \sqrt {c} \left (b^2-2 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {3 \sqrt {2} \sqrt {c} \left (-b^2+2 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}}}{6 a^2 e} \]

[In]

Integrate[1/((d + e*x)^4*(a + b*(d + e*x)^2 + c*(d + e*x)^4)),x]

[Out]

((-2*a)/(d + e*x)^3 + (6*b)/(d + e*x) + (3*Sqrt[2]*Sqrt[c]*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]
*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[2]
*Sqrt[c]*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])
/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(6*a^2*e)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.70 (sec) , antiderivative size = 188, normalized size of antiderivative = 0.84

method result size
default \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,e^{4} \textit {\_Z}^{4}+4 c d \,e^{3} \textit {\_Z}^{3}+\left (6 c \,d^{2} e^{2}+b \,e^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{3} e c +2 b d e \right ) \textit {\_Z} +d^{4} c +b \,d^{2}+a \right )}{\sum }\frac {\left (\textit {\_R}^{2} b c \,e^{2}+2 \textit {\_R} b c d e +b c \,d^{2}-a c +b^{2}\right ) \ln \left (x -\textit {\_R} \right )}{2 e^{3} c \,\textit {\_R}^{3}+6 c d \,e^{2} \textit {\_R}^{2}+6 c \,d^{2} e \textit {\_R} +2 d^{3} c +b e \textit {\_R} +b d}}{2 a^{2} e}-\frac {1}{3 a e \left (e x +d \right )^{3}}+\frac {b}{a^{2} e \left (e x +d \right )}\) \(188\)
risch \(\frac {\frac {b e \,x^{2}}{a^{2}}+\frac {2 b d x}{a^{2}}-\frac {-3 b \,d^{2}+a}{3 e \,a^{2}}}{\left (e x +d \right )^{3}}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (16 e^{4} c^{2} a^{7}-8 a^{6} b^{2} c \,e^{4}+a^{5} b^{4} e^{4}\right ) \textit {\_Z}^{4}+\left (-20 b \,e^{2} c^{3} a^{3}+25 b^{3} e^{2} c^{2} a^{2}-9 b^{5} e^{2} c a +b^{7} e^{2}\right ) \textit {\_Z}^{2}+c^{5}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (40 a^{7} c^{2} e^{5}-22 a^{6} b^{2} c \,e^{5}+3 a^{5} b^{4} e^{5}\right ) \textit {\_R}^{4}+\left (-43 a^{3} b \,c^{3} e^{3}+51 a^{2} b^{3} c^{2} e^{3}-18 a \,b^{5} c \,e^{3}+2 b^{7} e^{3}\right ) \textit {\_R}^{2}+2 c^{5} e \right ) x +\left (40 a^{7} c^{2} d \,e^{4}-22 a^{6} b^{2} c d \,e^{4}+3 a^{5} b^{4} d \,e^{4}\right ) \textit {\_R}^{4}+\left (-8 a^{5} b \,c^{2} e^{3}+6 a^{4} b^{3} c \,e^{3}-a^{3} b^{5} e^{3}\right ) \textit {\_R}^{3}+\left (-43 a^{3} b \,c^{3} d \,e^{2}+51 a^{2} b^{3} c^{2} d \,e^{2}-18 a \,b^{5} c d \,e^{2}+2 b^{7} d \,e^{2}\right ) \textit {\_R}^{2}+a^{2} c^{4} e \textit {\_R} +2 c^{5} d \right )\right )}{2}\) \(391\)

[In]

int(1/(e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4),x,method=_RETURNVERBOSE)

[Out]

1/2/a^2/e*sum((_R^2*b*c*e^2+2*_R*b*c*d*e+b*c*d^2-a*c+b^2)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e+2*c*d^3+_R
*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+d^4*c+b
*d^2+a))-1/3/a/e/(e*x+d)^3+b/a^2/e/(e*x+d)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2044 vs. \(2 (188) = 376\).

Time = 0.33 (sec) , antiderivative size = 2044, normalized size of antiderivative = 9.12 \[ \int \frac {1}{(d+e x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx=\text {Too large to display} \]

[In]

integrate(1/(e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4),x, algorithm="fricas")

[Out]

1/6*(6*b*e^2*x^2 + 12*b*d*e*x + 6*b*d^2 + 3*sqrt(1/2)*(a^2*e^4*x^3 + 3*a^2*d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d
^3*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 -
6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))*log(2*(b^4*c^3 - 3*a*b^2*c^4
 + a^2*c^5)*e*x + 2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*d + sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^
3*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)) - (b^8 - 8*a*
b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4)*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^
6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5
*b^2 - 4*a^6*c)*e^2))) - 3*sqrt(1/2)*(a^2*e^4*x^3 + 3*a^2*d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d^3*e)*sqrt(-(b^5
- 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a
^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x +
 2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*d - sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^3*sqrt((b^8 - 6*a
*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)) - (b^8 - 8*a*b^6*c + 20*a^2*b^
4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4)*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^
8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e
^2))) - 3*sqrt(1/2)*(a^2*e^4*x^3 + 3*a^2*d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d^3*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a
^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^
2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x + 2*(b^4*c^3 - 3*a
*b^2*c^4 + a^2*c^5)*d + sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^3*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b
^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)) + (b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^
2*c^3 + 4*a^4*c^4)*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 1
1*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))) + 3*sqrt(1/
2)*(a^2*e^4*x^3 + 3*a^2*d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d^3*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b
^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4
)))/((a^5*b^2 - 4*a^6*c)*e^2))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x + 2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^
5)*d - sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^3*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^
2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)) + (b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4
)*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6
*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))) - 2*a)/(a^2*e^4*x^3 + 3*a^2*
d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d^3*e)

Sympy [A] (verification not implemented)

Time = 104.66 (sec) , antiderivative size = 347, normalized size of antiderivative = 1.55 \[ \int \frac {1}{(d+e x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx=\frac {- a + 3 b d^{2} + 6 b d e x + 3 b e^{2} x^{2}}{3 a^{2} d^{3} e + 9 a^{2} d^{2} e^{2} x + 9 a^{2} d e^{3} x^{2} + 3 a^{2} e^{4} x^{3}} + \operatorname {RootSum} {\left (t^{4} \cdot \left (256 a^{7} c^{2} e^{4} - 128 a^{6} b^{2} c e^{4} + 16 a^{5} b^{4} e^{4}\right ) + t^{2} \left (- 80 a^{3} b c^{3} e^{2} + 100 a^{2} b^{3} c^{2} e^{2} - 36 a b^{5} c e^{2} + 4 b^{7} e^{2}\right ) + c^{5}, \left ( t \mapsto t \log {\left (x + \frac {- 96 t^{3} a^{7} b c^{2} e^{3} + 56 t^{3} a^{6} b^{3} c e^{3} - 8 t^{3} a^{5} b^{5} e^{3} - 4 t a^{4} c^{4} e + 32 t a^{3} b^{2} c^{3} e - 40 t a^{2} b^{4} c^{2} e + 16 t a b^{6} c e - 2 t b^{8} e + a^{2} c^{5} d - 3 a b^{2} c^{4} d + b^{4} c^{3} d}{a^{2} c^{5} e - 3 a b^{2} c^{4} e + b^{4} c^{3} e} \right )} \right )\right )} \]

[In]

integrate(1/(e*x+d)**4/(a+b*(e*x+d)**2+c*(e*x+d)**4),x)

[Out]

(-a + 3*b*d**2 + 6*b*d*e*x + 3*b*e**2*x**2)/(3*a**2*d**3*e + 9*a**2*d**2*e**2*x + 9*a**2*d*e**3*x**2 + 3*a**2*
e**4*x**3) + RootSum(_t**4*(256*a**7*c**2*e**4 - 128*a**6*b**2*c*e**4 + 16*a**5*b**4*e**4) + _t**2*(-80*a**3*b
*c**3*e**2 + 100*a**2*b**3*c**2*e**2 - 36*a*b**5*c*e**2 + 4*b**7*e**2) + c**5, Lambda(_t, _t*log(x + (-96*_t**
3*a**7*b*c**2*e**3 + 56*_t**3*a**6*b**3*c*e**3 - 8*_t**3*a**5*b**5*e**3 - 4*_t*a**4*c**4*e + 32*_t*a**3*b**2*c
**3*e - 40*_t*a**2*b**4*c**2*e + 16*_t*a*b**6*c*e - 2*_t*b**8*e + a**2*c**5*d - 3*a*b**2*c**4*d + b**4*c**3*d)
/(a**2*c**5*e - 3*a*b**2*c**4*e + b**4*c**3*e))))

Maxima [F]

\[ \int \frac {1}{(d+e x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx=\int { \frac {1}{{\left ({\left (e x + d\right )}^{4} c + {\left (e x + d\right )}^{2} b + a\right )} {\left (e x + d\right )}^{4}} \,d x } \]

[In]

integrate(1/(e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4),x, algorithm="maxima")

[Out]

1/3*(3*b*e^2*x^2 + 6*b*d*e*x + 3*b*d^2 - a)/(a^2*e^4*x^3 + 3*a^2*d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d^3*e) + in
tegrate((b*c*e^2*x^2 + 2*b*c*d*e*x + b*c*d^2 + b^2 - a*c)/(c*e^4*x^4 + 4*c*d*e^3*x^3 + c*d^4 + (6*c*d^2 + b)*e
^2*x^2 + b*d^2 + 2*(2*c*d^3 + b*d)*e*x + a), x)/a^2

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1347 vs. \(2 (188) = 376\).

Time = 0.30 (sec) , antiderivative size = 1347, normalized size of antiderivative = 6.01 \[ \int \frac {1}{(d+e x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx=\text {Too large to display} \]

[In]

integrate(1/(e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4),x, algorithm="giac")

[Out]

-1/2*((b*c*e^2*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^2 - 2*b*c*d*e*(sqrt(1/2)*sqrt(
-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e) + b*c*d^2 + b^2 - a*c)*log(x + sqrt(1/2)*sqrt(-(b*e^2 + sqrt(
b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/(2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^3
- 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^2 - 2*c*d^3*e - b*d*e + (6*c*d^2*
e^2 + b*e^2)*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)) - (b*c*e^2*(sqrt(1/2)*sqrt(-(b*
e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^2 + 2*b*c*d*e*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c
*e^4)) - d/e) + b*c*d^2 + b^2 - a*c)*log(x - sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/(
2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^3 + 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2
 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^2 + 2*c*d^3*e + b*d*e + (6*c*d^2*e^2 + b*e^2)*(sqrt(1/2)*sqrt(-(b*e^
2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)) + (b*c*e^2*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4
)) + d/e)^2 - 2*b*c*d*e*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e) + b*c*d^2 + b^2 - a*c
)*log(x + sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/(2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 - s
qrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^3 - 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4))
+ d/e)^2 - 2*c*d^3*e - b*d*e + (6*c*d^2*e^2 + b*e^2)*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4))
 + d/e)) - (b*c*e^2*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^2 + 2*b*c*d*e*(sqrt(1/2)*
sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e) + b*c*d^2 + b^2 - a*c)*log(x - sqrt(1/2)*sqrt(-(b*e^2 -
sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/(2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/
e)^3 + 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^2 + 2*c*d^3*e + b*d*e + (6*c
*d^2*e^2 + b*e^2)*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)))/a^2 + 1/3*(3*b*e^2*x^2 +
6*b*d*e*x + 3*b*d^2 - a)/((e*x + d)^3*a^2*e)

Mupad [B] (verification not implemented)

Time = 9.48 (sec) , antiderivative size = 5214, normalized size of antiderivative = 23.28 \[ \int \frac {1}{(d+e x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx=\text {Too large to display} \]

[In]

int(1/((d + e*x)^4*(a + b*(d + e*x)^2 + c*(d + e*x)^4)),x)

[Out]

((2*b*d*x)/a^2 - (a - 3*b*d^2)/(3*a^2*e) + (b*e*x^2)/a^2)/(d^3 + e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x) - atan((((
b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^
5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*(x*(4*a^
8*c^5*e^12 + 2*a^6*b^4*c^3*e^12 - 8*a^7*b^2*c^4*e^12) - ((b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 -
25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^
4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*((x*(32*a^11*b*c^3*e^14 - 8*a^10*b^3*c^2*e^14) + 32*a^11*b*c
^3*d*e^13 - 8*a^10*b^3*c^2*d*e^13)*((b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2*b^3*c^2 + a^2*
c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^
2 - 8*a^6*b^2*c*e^2)))^(1/2) - 16*a^10*c^4*e^12 - 4*a^8*b^4*c^2*e^12 + 20*a^9*b^2*c^3*e^12) + 4*a^8*c^5*d*e^11
 + 2*a^6*b^4*c^3*d*e^11 - 8*a^7*b^2*c^4*d*e^11)*1i + ((b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*
a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e
^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*(x*(4*a^8*c^5*e^12 + 2*a^6*b^4*c^3*e^12 - 8*a^7*b^2*c^4*e^12) -
 ((b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a
*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*((x*(
32*a^11*b*c^3*e^14 - 8*a^10*b^3*c^2*e^14) + 32*a^11*b*c^3*d*e^13 - 8*a^10*b^3*c^2*d*e^13)*((b^4*(-(4*a*c - b^2
)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^5*c - 3*a*b^2*c*(-
(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2) + 16*a^10*c^4*e^12 + 4*a^8
*b^4*c^2*e^12 - 20*a^9*b^2*c^3*e^12) + 4*a^8*c^5*d*e^11 + 2*a^6*b^4*c^3*d*e^11 - 8*a^7*b^2*c^4*d*e^11)*1i)/(((
b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^
5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*(x*(4*a^
8*c^5*e^12 + 2*a^6*b^4*c^3*e^12 - 8*a^7*b^2*c^4*e^12) - ((b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 -
25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^
4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*((x*(32*a^11*b*c^3*e^14 - 8*a^10*b^3*c^2*e^14) + 32*a^11*b*c
^3*d*e^13 - 8*a^10*b^3*c^2*d*e^13)*((b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2*b^3*c^2 + a^2*
c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^
2 - 8*a^6*b^2*c*e^2)))^(1/2) + 16*a^10*c^4*e^12 + 4*a^8*b^4*c^2*e^12 - 20*a^9*b^2*c^3*e^12) + 4*a^8*c^5*d*e^11
 + 2*a^6*b^4*c^3*d*e^11 - 8*a^7*b^2*c^4*d*e^11) - ((b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2
*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2
+ 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*(x*(4*a^8*c^5*e^12 + 2*a^6*b^4*c^3*e^12 - 8*a^7*b^2*c^4*e^12) - ((
b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^
5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*((x*(32*
a^11*b*c^3*e^14 - 8*a^10*b^3*c^2*e^14) + 32*a^11*b*c^3*d*e^13 - 8*a^10*b^3*c^2*d*e^13)*((b^4*(-(4*a*c - b^2)^3
)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) + 9*a*b^5*c - 3*a*b^2*c*(-(4*
a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2) - 16*a^10*c^4*e^12 - 4*a^8*b^
4*c^2*e^12 + 20*a^9*b^2*c^3*e^12) + 4*a^8*c^5*d*e^11 + 2*a^6*b^4*c^3*d*e^11 - 8*a^7*b^2*c^4*d*e^11) + 2*a^6*b*
c^5*e^10))*((b^4*(-(4*a*c - b^2)^3)^(1/2) - b^7 + 20*a^3*b*c^3 - 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(
1/2) + 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(
1/2)*2i - atan(((-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2
)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^
2)))^(1/2)*(x*(4*a^8*c^5*e^12 + 2*a^6*b^4*c^3*e^12 - 8*a^7*b^2*c^4*e^12) - (-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/
2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^
3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*((x*(32*a^11*b*c^3*e^14 - 8*a^10*b^3*c^2
*e^14) + 32*a^11*b*c^3*d*e^13 - 8*a^10*b^3*c^2*d*e^13)*(-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 +
25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^
4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2) - 16*a^10*c^4*e^12 - 4*a^8*b^4*c^2*e^12 + 20*a^9*b^2*c^3*e^1
2) + 4*a^8*c^5*d*e^11 + 2*a^6*b^4*c^3*d*e^11 - 8*a^7*b^2*c^4*d*e^11)*1i + (-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2
) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3
)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*(x*(4*a^8*c^5*e^12 + 2*a^6*b^4*c^3*e^12 -
 8*a^7*b^2*c^4*e^12) - (-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*
c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b
^2*c*e^2)))^(1/2)*((x*(32*a^11*b*c^3*e^14 - 8*a^10*b^3*c^2*e^14) + 32*a^11*b*c^3*d*e^13 - 8*a^10*b^3*c^2*d*e^1
3)*(-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) -
9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2) +
16*a^10*c^4*e^12 + 4*a^8*b^4*c^2*e^12 - 20*a^9*b^2*c^3*e^12) + 4*a^8*c^5*d*e^11 + 2*a^6*b^4*c^3*d*e^11 - 8*a^7
*b^2*c^4*d*e^11)*1i)/((-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c
 - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^
2*c*e^2)))^(1/2)*(x*(4*a^8*c^5*e^12 + 2*a^6*b^4*c^3*e^12 - 8*a^7*b^2*c^4*e^12) - (-(b^7 + b^4*(-(4*a*c - b^2)^
3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c -
 b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*((x*(32*a^11*b*c^3*e^14 - 8*a^10*b
^3*c^2*e^14) + 32*a^11*b*c^3*d*e^13 - 8*a^10*b^3*c^2*d*e^13)*(-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*
c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(
a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2) + 16*a^10*c^4*e^12 + 4*a^8*b^4*c^2*e^12 - 20*a^9*b^2*c
^3*e^12) + 4*a^8*c^5*d*e^11 + 2*a^6*b^4*c^3*d*e^11 - 8*a^7*b^2*c^4*d*e^11) - (-(b^7 + b^4*(-(4*a*c - b^2)^3)^(
1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2
)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*(x*(4*a^8*c^5*e^12 + 2*a^6*b^4*c^3*e^1
2 - 8*a^7*b^2*c^4*e^12) - (-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4
*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^
6*b^2*c*e^2)))^(1/2)*((x*(32*a^11*b*c^3*e^14 - 8*a^10*b^3*c^2*e^14) + 32*a^11*b*c^3*d*e^13 - 8*a^10*b^3*c^2*d*
e^13)*(-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2)
 - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)
 - 16*a^10*c^4*e^12 - 4*a^8*b^4*c^2*e^12 + 20*a^9*b^2*c^3*e^12) + 4*a^8*c^5*d*e^11 + 2*a^6*b^4*c^3*d*e^11 - 8*
a^7*b^2*c^4*d*e^11) + 2*a^6*b*c^5*e^10))*(-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2
 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^5*b^4*e^2 + 16*a^7
*c^2*e^2 - 8*a^6*b^2*c*e^2)))^(1/2)*2i